Mathematics
 Higher level
 Paper 3 - discrete mathematics

Wednesday 18 May 2016 (morning)

1 hour

Instructions to candidates

- Do not open this examination paper until instructed to do so.
- Answer all the questions.
- Unless otherwise stated in the question, all numerical answers should be given exactly or correct to three significant figures.
- A graphic display calculator is required for this paper.
- A clean copy of the mathematics HL and further mathematics HL formula booklet is required for this paper.
- The maximum mark for this examination paper is [60 marks].

Please start each question on a new page. Full marks are not necessarily awarded for a correct answer with no working. Answers must be supported by working and/or explanations. In particular, solutions found from a graphic display calculator should be supported by suitable working. For example, if graphs are used to find a solution, you should sketch these as part of your answer. Where an answer is incorrect, some marks may be given for a correct method, provided this is shown by written working. You are therefore advised to show all working.

1. [Maximum mark: 9]
(a) Use the Euclidean algorithm to show that 1463 and 389 are relatively prime.
(b) Find positive integers a and b such that $1463 a-389 b=1$.
2. [Maximum mark: 12]

The weights of the edges in the complete graph G are shown in the following table.

	A	B	C	D	E	F
A	-	14	10	8	12	9
B	14	-	9	12	10	13
C	10	9	-	7	8	13
D	8	12	7	-	9	11
E	12	10	8	9	-	11
F	9	13	13	11	11	-

(a) Starting at A, use the nearest neighbour algorithm to find an upper bound for the travelling salesman problem for G.
(b) By first removing A, use the deleted vertex algorithm to find a lower bound for the travelling salesman problem for G.
3. [Maximum mark: 10]

Throughout this question, $(a b c \ldots)_{n}$ denotes the number $a b c \ldots$ written with number base n.
For example (359) $)_{n}=3 n^{2}+5 n+9$.
(a) (i) Given that $(43)_{n} \times(56)_{n}=(3112)_{n}$, show that $3 n^{3}-19 n^{2}-38 n-16=0$.
(ii) Hence determine the value of n.
(b) Determine the set of values of n satisfying $(13)_{n} \times(21)_{n}=(273)_{n}$.
(c) Show that there are no possible values of n satisfying $(32)_{n} \times(61)_{n}=(1839)_{n}$.
4. [Maximum mark: 17]
(a) Solve the recurrence relation $v_{n}+4 v_{n-1}+4 v_{n-2}=0$ where $v_{1}=0, v_{2}=1$.
(b) Use strong induction to prove that the solution to the recurrence relation $u_{n}-4 u_{n-1}+4 u_{n-2}=0$ where $u_{1}=0, u_{2}=1$ is given by $u_{n}=2^{n-2}(n-1)$.
(c) Find a simplified expression for $u_{n}+v_{n}$ given that,
(i) n is even.
(ii) n is odd.
5. [Maximum mark: 12]

The simple, connected graph G has e edges and v vertices, where $v \geq 3$.
(a) Show that the number of edges in G^{\prime}, the complement of G, is $\frac{1}{2} v^{2}-\frac{1}{2} v-e$.

Given that both G and G^{\prime} are planar and connected,
(b) show that the sum of the number of faces in G and the number of faces in G^{\prime} is independent of e;
(c) show that $v^{2}-13 v+24 \leq 0$ and hence determine the maximum possible value of v.

